
11. AVR CPU Core

11.1. Overview
This section discusses the AVR core architecture in general. The main function of the CPU core is to
ensure correct program execution. The CPU must therefore be able to access memories, perform
calculations, control peripherals, and handle interrupts.

Figure 11-1. Block Diagram of the AVR Architecture

Register file

Flash program
memory

Program
counter

Instruction
register

Instruction
decode

Data memory

ALU
Status
register

R0R1
R2R3
R4R5
R6R7
R8R9

R10R11
R12R13
R14R15
R16R17
R18R19
R20R21
R22R23
R24R25

R26 (XL)R27 (XH)
R28 (YL)R29 (YH)
R30 (ZL)R31 (ZH)

Stack
pointer

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate
memories and buses for program and data. Instructions in the program memory are executed with a
single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the
program memory. This concept enables instructions to be executed in every clock cycle. The program
memory is In-System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock
cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU
operation, two operands are output from the Register File, the operation is executed, and the result is
stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space
addressing – enabling efficient address calculations. One of the these address pointers can also be used
as an address pointer for look up tables in Flash program memory. These added function registers are
the 16-bit X-, Y-, and Z-register, described later in this section.

Atmel ATmega328/P [DATASHEET]
Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

25

11.3.1. Status Register
When addressing I/O Registers as data space using LD and ST instructions, the provided offset must be
used. When using the I/O specific commands IN and OUT, the offset is reduced by 0x20, resulting in an
I/O address offset within 0x00 - 0x3F.

Name:  SREG
Offset:  0x5F
Reset:  0x00
Property:
 

When addressing as I/O Register: address offset is 0x3F

Bit 7 6 5 4 3 2 1 0
 I T H S V N Z C

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt
enable control is then performed in separate control registers. If the Global Interrupt Enable Register is
cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-
bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable
subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI
instructions, as described in the instruction set reference.

Bit 6 – T: Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for
the operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and
a bit in T can be copied into a bit in a register in the Register File by the BLD instruction.

Bit 5 – H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Flag is useful in
BCD arithmetic. See the Instruction Set Description for detailed information.

Bit 4 – S: Sign Flag, S = N ㊉ V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow
Flag V. See the Instruction Set Description for detailed information.

Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetic. See the Instruction Set
Description for detailed information.

Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the Instruction Set
Description for detailed information.

Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the Instruction Set
Description for detailed information.

Atmel ATmega328/P [DATASHEET]
Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

27

Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the Instruction Set Description
for detailed information.

11.4. General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the
required performance and flexibility, the following input/output schemes are supported by the Register
File:

• One 8-bit output operand and one 8-bit result input
• Two 8-bit output operands and one 8-bit result input
• Two 8-bit output operands and one 16-bit result input
• One 16-bit output operand and one 16-bit result input

Figure 11-2. AVR CPU General Purpose Working Registers
7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

Genera l R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Regis ters R17 0x11

…

R26 0x1A X-regis te r Low Byte

R27 0x1B X-regis te r High Byte

R28 0x1C Y-regis te r Low Byte

R29 0x1D Y-regis te r High Byte

R30 0x1E Z-regis te r Low Byte

R31 0x1F Z-regis te r High Byte

Most of the instructions operating on the Register File have direct access to all registers, and most of
them are single cycle instructions. As shown in the figure, each register is also assigned a data memory
address, mapping them directly into the first 32 locations of the user Data Space. Although not being
physically implemented as SRAM locations, this memory organization provides great flexibility in access
of the registers, as the X-, Y-, and Z-pointer registers can be set to index any register in the file.

11.4.1. The X-register, Y-register, and Z-register
The registers R26...R31 have some added functions to their general purpose usage. These registers are
16-bit address pointers for indirect addressing of the data space. The three indirect address registers X,
Y, and Z are defined as described in the figure.

Atmel ATmega328/P [DATASHEET]
Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

28

Figure 11-3. The X-, Y-, and Z-registers
15 XH XL 0

X-register 7 0 7 0

R27 R26

15 YH YL 0

Y-register 7 0 7 0

R29 R28

15 ZH ZL 0

Z-register 7 0 7 0

R31 R30

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

Related Links
Instruction Set Summary on page 432

11.5. Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing return
addresses after interrupts and subroutine calls. The Stack is implemented as growing from higher to
lower memory locations. The Stack Pointer Register always points to the top of the Stack.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are
located. A Stack PUSH command will decrease the Stack Pointer. The Stack in the data SRAM must be
defined by the program before any subroutine calls are executed or interrupts are enabled. Initial Stack
Pointer value equals the last address of the internal SRAM and the Stack Pointer must be set to point
above start of the SRAM. See the table for Stack Pointer details.

Table 11-1. Stack Pointer Instructions

Instruction Stack pointer Description

PUSH Decremented by 1 Data is pushed onto the stack

CALL

ICALL

RCALL

Decremented by 2 Return address is pushed onto the stack with a subroutine call or
interrupt

POP Incremented by 1 Data is popped from the stack

RET

RETI

Incremented by 2 Return address is popped from the stack with return from subroutine or
return from interrupt

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually
used is implementation dependent. Note that the data space in some implementations of the AVR
architecture is so small that only SPL is needed. In this case, the SPH Register will not be present.

Atmel ATmega328/P [DATASHEET]
Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

29

11.5.1. Stack Pointer Register High byte
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name:  SPH
Offset:  0x5E
Reset:  RAMEND
Property:
 

When addressing I/O Registers as data space the offset address is 0x3E

Bit 7 6 5 4 3 2 1 0
 (SP[10:8]) SPH

Access RW RW RW
Reset 0 0 0

Bits 2:0 – (SP[10:8]) SPH: Stack Pointer Register
SPH and SPL are combined into SP. It means SPH[2:0] is SP[10:8].

Atmel ATmega328/P [DATASHEET]
Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

30

11.5.2. Stack Pointer Register Low byte
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name:  SPL
Offset:  0x5D
Reset:  0x11111111
Property:
 

When addressing I/O Registers as data space the offset address is 0x3D

Bit 7 6 5 4 3 2 1 0
 (SP[7:0]) SPL

Access RW RW RW RW RW RW RW RW
Reset 0 0 0 0 0 0 0 1

Bits 7:0 – (SP[7:0]) SPL: Stack Pointer Register
SPH and SPL are combined into SP. It means SPL[7:0] is SP[7:0].

11.6. Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR CPU is
driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal
clock division is used. The Figure below shows the parallel instruction fetches and instruction executions
enabled by the Harvard architecture and the fast-access Register File concept. This is the basic pipelining
concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 11-4. The Parallel Instruction Fetches and Instruction Executions

clk

1st Instruction Fetch
1st Instruction Execute

2nd Instruction Fetch
2nd Instruction Execute

3rd Instruction Fetch
3rd Instruction Execute

4th Instruction Fetch

T1 T2 T3 T4

CPU

The following Figure shows the internal timing concept for the Register File. In a single clock cycle an
ALU operation using two register operands is executed, and the result is stored back to the destination
register.

Atmel ATmega328/P [DATASHEET]
Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

31

12.3. SRAM Data Memory
The following figure shows how the device SRAM Memory is organized.

The device is a complex microcontroller with more peripheral units than can be supported within the 64
locations reserved in the Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60
- 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

The lower 2303 data memory locations address both the Register File, the I/O memory, Extended I/O
memory, and the internal data SRAM. The first 32 locations address the Register File, the next 64
location the standard I/O memory, then 160 locations of Extended I/O memory, and the next 2K locations
address the internal data SRAM.

The five different addressing modes for the data memory cover:
• Direct

– The direct addressing reaches the entire data space.
• Indirect with Displacement

– The Indirect with Displacement mode reaches 63 address locations from the base address
given by the Y- or Z-register.

• Indirect
– In the Register File, registers R26 to R31 feature the indirect addressing pointer registers.

• Indirect with Pre-decrement
– The address registers X, Y, and Z are decremented.

• Indirect with Post-increment
– The address registers X, Y, and Z are incremented.

The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers, and the 2K
bytes of internal data SRAM in the device are all accessible through all these addressing modes.

Figure 12-2. Data Memory Map with 2048 byte internal data SRAM

(2048x8)

0x08FF
12.3.1. Data Memory Access Times

The internal data SRAM access is performed in two clkCPU cycles as described in the following Figure.

Atmel ATmega328/P [DATASHEET]
Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

35

12.4.2. Preventing EEPROM Corruption
During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is too low for
the CPU and the EEPROM to operate properly. These issues are the same as for board level systems
using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regular
write sequence to the EEPROM requires a minimum voltage to operate correctly. Secondly, the CPU itself
can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done
by enabling the internal Brown-out Detector (BOD). If the detection level of the internal BOD does not
match the needed detection level, an external low VCC reset Protection circuit can be used. If a reset
occurs while a write operation is in progress, the write operation will be completed provided that the
power supply voltage is sufficient.

12.5. I/O Memory
The I/O space definition of the device is shown in the Register Summary.

All device I/Os and peripherals are placed in the I/O space. All I/O locations may be accessed by the
LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32 general purpose working
registers and the I/O space. I/O Registers within the address range 0x00-0x1F are directly bit-accessible
using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using
the SBIS and SBIC instructions.

When using the I/O specific commands IN and OUT, the I/O addresses 0x00-0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these
addresses. The device is a complex microcontroller with more peripheral units than can be supported
within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space
from 0x60..0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O
memory addresses should never be written.

Some of the Status Flags are cleared by writing a '1' to them; this is described in the flag descriptions.
Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and
can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with
registers 0x00-0x1F only.

The I/O and Peripherals Control Registers are explained in later sections.

Related Links
MEMPROG- Memory Programming on page 347
Register Summary on page 428
Instruction Set Summary on page 432

12.5.1. General Purpose I/O Registers
The device contains three General Purpose I/O Registers, General Purpose I/O Register 0/1/2 (GPIOR
0/1/2). These registers can be used for storing any information, and they are particularly useful for storing
global variables and Status Flags. General Purpose I/O Registers within the address range 0x00 - 0x1F
are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

Atmel ATmega328/P [DATASHEET]
Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

37

